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a# = 0 gives the required expansion in each case. For algorithm Sn = w3S._1 + T., Tn = w2Tn_l + Un, 
T, U,~ = wlUn-1 with So = To = Uo = 1. 

o o  

F ( a , # )  = exp(- t tc)  E [ ( - -a i r )n - i~ (  n "4- 2)!] 
r t = l  

X Sn  (031, 032, 033), 

m 

and for T, 

F ( a , u )  = exp(- tw){  l cS1(031,w2,033) 
o o  

+ a E [ ( - a " ) " -~ / (  n + 2)!](-#c + n - 1) 
! r t ~ 2  

X Sn(031, 032, 033) } . 

In these expressions, Sn(wl ,  w2, w3) is the fully symmet- 
ric function of order n of three variables; i.e. $1 - -  o 3 1  "4- 
032"+-033, $2 : 032 +032+0323+031032+03303 1.31_032033 etc. Sn 
can be generated rapidly for any n by using the simple 
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Abstract 

The results of a theoretical analysis of the influence of a 
high-frequency standing acoustic wave on the angular 
spectrum of a diffracted beam in a perfect crystal are 
presented. The rapid suppression and modulation of the 
intensity at the center of the diffraction pattern are found 
for the first time. The characteristic duration of this 
modulation is many times smaller than the period of the 
acoustic wave. These effects can be used for the 
suppression and modulation of a highly collimated 
monochromatic beam of synchrotron radiation. 

Introduction 

The influence of the acoustic waves (AW) on the 
diffraction of X-rays and thermal neutrons in single 
crystals has been considered by many authors (e.g. 

Spencer & Pearman, 1970). Depending on the ultrasonic 
AW frequency, a distinction can be made between two 
different mechanisms. At k s << Ak 0 (Ak 0 = 2rr/r, r is 
the extinction length, k s is the wave vector of the AW), 
the ultrasound deformations simply expand (in general) 
the Bragg-angle scattering interval [for a more detailed 
analysis see Kulda, Vrana & Mikula (1988), Lukas & 
Kulda (1989), Mikula, Lukas & Kulda (1992)]. A high- 
frequency ultrasonic AW with k s > Ak o mixes the states 
corresponding to the different sheets of the dispersion 
surface (K6hler, M6hling & Peibst, 1974). Such a mixing 
leads to a number of effects, e.g. resonant suppression of 
the Borrmann effect (Entin, 1977), a new PendellOsung 
determined by AW (Iolin & Entin, 1983); Entin & 
Puchkova, 1984; Iolin, Zolotoyabko, Raitman, Kuvaldin 
& Gavrilov, 1986). In general, AW increases the integral 
intensity I h of the diffracted beam in perfect crystals and 
leads to decreasing I h in slightly deformed single crystals 
(Iolin, Raitman, Kuvaldin & Zolotoyabko, 1988). 
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898 MODULATION OF DIFFRACTED BEAM BY ULTRASOUND 

Here, we report the results of a theoretical analysis of 
the high-frequency ultrasound influence on the angular 
spectrum of a diffracted beam in a perfect crystal for the 
Laue case (transmission geometry). It is well known that 
such a spectrum contains many peaks, which are phonon 
satellites. Krhler, Mrhling & Peibst (1974) for the first 
time predicted and observed the decrease in intensity, 
In(q), of the zeroth-order satellite (the main diffraction 
peak) due to AWs (q is the impulse along the surface of 
the crystal; it is small near the center of the diffraction 
pattern). Their analysis is limited mainly by the case of 
moving (not standing) AWs. For a moving AW, the 
zeroth-order satellite shows no time dependence (at least 
for the case of a thick crystal) because the deformation 
picture in a moving AW is self-similar at different 
moments of time t. 

We consider the decrease in intensity In(q) of the 
zeroth-order satellite for the case of a standing AW in a 
perfect crystal. A strong time dependence of the 
diffracted-beam intensity In(q) has been found in this 
case. For example, at some moment t = t~, any 
deformation will be absent in the standing AW and the 
intensity In(q) will be large near the center of the 
diffraction pattern. Suppose that, at the moment t = t 0, 
the standing AW amplitude W = W o and lh(O ) ~" O. At 
the next moment, t = t o + 8t, W = W 0 + ~W, 
I~Wl << IWol. A coherent addition of amplitudes of 
scattering between the layers of the crystal will be 
realized. Therefore, the intensity lh(O ) ~--(nt~W) 2 (the 
thickness of the crystal T = n2,, 2s is the wavelength of 
the AW) and it is rapidly increasing for the case of a 
thick (n >> 1) crystal. 

Therefore, the frequency of the PendellSsung move- 
ment is n times higher than the frequency of the acoustic 
wave. We found that In(q) ~_ q4 when q << 1 and t = t 0. 
Therefore, a rapid suppression of In(q) may be observed 
in the central part of the main Lane diffraction peak for a 
very short time 8t (for example, at an AW frequency of 
100 MHz, a suppression by a factor 1/50-1/100 will exist 
during 50-100ps). The analysis of the steep time 
dependence of In(q) for a standing AW is the main 
subject of this work. We have found that the transfer- 
matrix method is very useful for such a purpose. A very 
rapid intensity modulation of highly collimated mono- 
chromatic beams should be observed using synchrotron- 
radiation sources. 

Theory 
We consider the symmetrical Laue diffraction in a single- 
crystal plate. The Takagi-Taupin equations then have the 
form 

- iOqJo/OZ - i tan(Os)OqJo/OX 

+ (zak0/2) exp(iHU)~'n = 0 
(1) 

-- iOtff h/OZ + i tan(Os)O!Pn/Ox 

+ (za/Co/2) exp(- iHU)q% = 0 

U = 4W cos(wst)cos(k~z) ,  2~ = 2zr/k~, r = 2zr/zak o, 

(2) 

T = n 2  s, n =  1,2 . . . . .  (3) 

qJ0, qJh are the amplitudes of incident and diffracted 
beams, Ak 0 is the gap between the sheets of the 
dispersion surface, r is the extinction length, H is the 
diffraction vector, x, z are the axes parallel and 
perpendicular to the plate surface, T is the plate 
thickness, U is the displacement of a nucleus in the 
transversal AW with amplitude W, angular frequency a~ s 
and wave vector k s. The standing transversal AW is 
excited between two surfaces of the single-crystal plate. 
We assume the boundary condition (3). Another 
important case T = (2n + 1)2J2 may also be considered 
but suppression of In(q) is not so strong in this case. The 
moment Q J t a n O  s along the x axis is conserved. 
Equations (1) can be transformed to the simpler and 
dimensionless form 

- 2id~o/d~ + [d(HU)/d~]q~0 + q~o + P~h = 0 

-- 2 id~h /d~  - [d(HU)/d~]~h - qtPh + P~O = 0 
(4) 

HU = 4HW cos(ogst ) cos ~, p = Ako/ks, ~ = ksz 

(5) 

Qx = ksq/2 tan O s, 80  = qAOo/p ,  

A O  o = Ako/2k  o sin O s, 0 = 0  s + 8 0 ,  
(6) 

~P0 = ~0 exp[i(HU + q~)/2], 

~h = ~h exp[- i (HU + qO/2]. 

p >  1 and p <  1 correspond to the cases of low- 
frequency and high-frequency ultrasound, respectively, 
On is the Bragg angle, O is the angle between the 
incident beam and the surface normal to the plate and 
2AO 0 is the ordinary FWHM of the rocking curve. 

We consider the role of the instantaneous deformation 
(t = 0). The coefficients of (4) are periodic functions of 
x. Therefore, it seems natural to use the transfer-matrix 
method for the analysis of (4). Suppose we know the 
solution of (4) in the interval 0 _< ~ _< 2zr. The solutions 
at ~" = 2zr and ~ = 0 are connected by the matrix R(1,0): 

(oo)o  (o0) 
~=2= R(1,0) 

q~h ~--0 (7) 

R(1,0) ( R1, ) 
= , ~ - - ~ 0 ,  q)h. 

k, R21 R22 

The general expression for the unitary matrix R has 
the form (Landau & Lifshitz, 1965) 

R(1,0) = exp[itp + i(go')/2]. (8) 

Here, ~0, gx,y,z a r e  numerical parameters of R(1,0); crx,y.z 
are Pauli matrices. We will omit in the following the 
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unimportant (for the calculation of  lh) phase ~p. It is 
necessary to emphasize that we do not suppose that the 
scattered intensity is small in the region of q > 1. The 
solution O(~ = 2zrn) on the exit surface of  the crystal is 
defined by the exact formula 

0 (~  = 2~rn) = exp[in(g~r)/2]~(~ = 0). (9) 

The matrix exp[in(ga)/2] can be easily diagonalized 
tlsing the well known relation 

exp[in(ga)/2] = cos(ng/2) +/(go') sin(ng/2)/g.  (10) 

Therefore, the intensity I h of the diffracted beam can 
be exactly calculated as 

lh = (1 -- g~/g2)sin2(ng/2). (11) 

Expression (11) is excellently suited for the numerical 
calculation of  I h for the case of  a thick (n >> 1) crystal. It 
is not necessary to find numerically a solution of  the 
Takagi -Taupin  (TT) equations (4) for such a thick 
crystal, it is enough to solve the TT equations for a thin 
crystal (T = 2s) and then to find the parameters g and to 
apply (11). In order to analyze the parameters g, we 
rearrange Takagi -Taupin  equations (4) to the more 
suitable form 

- i d Fo /d  ~ + (p /2 )exp( iHU + iq~)F h = O, 

- i dFh /d  ~ + ( p / 2 ) e x p ( - i H U  - iq~) = O, 
(12) 

~o = Fo e x p [ - i ( H U  + q~)/2l,  

~h = Fh e x p [ + i ( H U  + q~)/2]. 

Solutions of  (12) at ~ = 2rr and ~ = 0 are connected 
by the matrix Rf: 

R(1,0)  = exp[- iaz /2(HU + q~)l~=2,l 

× R / exp[iaz/2(HU + q~)l~=o]. (13) 

Consider the matrix S(q) transforming the solution of  
Takagi -Taupin  equations at ~ -- 0 to that at ~ = zr, that is 
at the distance 2s/2. S(q) is described in a form similar to 
(8). R f and S(q) are mutually related as 

_ (  S [ l ( _ q  ) S~l(_q)exp(i2rrq ) ) - i  

Rf(q)  --k, S[2(-q)exp(- i2rrq)  S~2(-q)  

( S ' ' ( q )  S'2(q) ) (14) 
x S21(q) S22(q) . 

Let us suppose that we take such an instantaneous 
displacement U = U 0 or amplitude W = W 0 of  the 
acoustic wave (t = 0) that the probability of  scattering 
P&/z(q) in the thin crystal with T = 2s/2 is equal to zero 
at the center of the diffraction pattern, P;,s/z(q = O) -- O. 
It is obvious from the symmetry of  scattering and 
confirmed by results of the direct numerical solution of  
the Takagi-Taupin  equations (see Fig. 1) that, at q << 1, 

P,~/2 ~" q2. (15) 

Therefore, nondiagonal terms $12 ~-S21 "~ q. S(q) is 
expressed in the linear approximation over q and 8W in 
the form 

S(q) ~-- 1 + iqA¢ + iBaSW 

8 U = U - U o ,  8 W = W - W  o, A = A * ,  B = B * .  

(16) 

A, B are numerical constants. According to the optical 
theorem, the imaginary part of  the amplitude of  ' forward 
scattering' is proportional to the total cross section. The 
scattering at the crys*al with T = ).s/2 is absent at the 
center (q = 0) of  the diffraction pattern. Therefore, 
A z = B z = 0. After simple calculations, we find 

R f ~_ 1 + i2BaSW. (17) 
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Fig. 1. Diffraction at the layer T=; t s /2=25pm;  r=115pm; 
HW = 0.587; numerical  calculation; I h = 0.04 x 
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Therefore, terms linear in q are absent in the nondiagonal 
elements of Rf; these elements are proportional to q and 
8W: 

R f ~_ 1 + 2iBtrSW + 2iCtrq 2, C = C*. (18) 

C is a numerical constant. If 3W = 0, then the 
probability of scattering P~d2(q) at the crystal thickness 
T =2~ is 

Px, -~ q4. (19) 

This result is also confirmed by the results of direct 
numerical solution of the Takagi-Taupin equations (see 
Fig. 2). Therefore, there exists not only weak scattering 
in each 2ff2 layer but also almost complete compensation 
of the diffraction at one 2s/2 layer owing to the 
diffraction at the neighboring 2s/2 layer. After simple 
calculations, we find 

gz "~ -2rrq,  

g~ "~ (48WB~ + 4q2Co,)exp(io~HUl~=0 + ia:rrq), (20) 

ot = 4-1, B,~ = B x + iotBy, 

C~ = C x -]- ictCy, 

lh(q) ~ 16(SWB + q2C)2/[(2rrq)2 

+ 160WB + q2C)2] sin2{n/2[(2rtq) 2 

+ 16(SWB + q2Cf] ln} .  

Analysis of results 

Let us discuss the last term in lh(q) [(20)] when 8W -- 0 
and q << 1. This interference term leads to the disap- 
pearance of I h at the angle 8Oa: 

~ ) A  = AtOormlT,  (21) 

where m is an integer, r is the extinction length, T is the 
thickness of the crystal. Equation (21) is also confirmed 
by the results of numerical calculations (see Figs. 3 and 
4). It is well known that the period of the ordinary 
Pendellrsung is defined by the gap Ak 0 between the 
sheets of the dispersion surface. The scattering at the 
crystal thickness T = 2~ is equal to zero or, more exactly, 
proportional to  q4 in our case. Therefore, the sheets of the 
dispersion surface (DS) are crossed with each other, the 
ordinary gap between them being absent when 8W = 0. 
Acoustic interference beats of I h [(20), (21)] are induced 
by transitions with the momentum 1/T between the sheets 
of the DS. lh(q) in (20) may be approximated by 

lh(q) ~-- 16(SWB + q2C)2/[(2yrq)2 -F 1 6 ( 3 W B )  2] 

x sin2{n/2[(2rrq) 2 + 16(t~WB)2]l/2}. (22)  

Therefore, the gap Ak~ between sheets of the DS is 
Ak~ ~ 8W and the corresponding characteristic length is 
large (L = 2rr/Aks >> r, L = rr2f f2/IdWBI,  r s >> r). 

We have studied the following examples: r = 115 ~tm; 
k f f A k  o = 2 . 3 ;  T=500k tm ( n =  10) and 1000~tm 
(n = 20). In order to find the numerical parameters B 
and C, we compare the results of the direct numerical 
solution of the Takagi-Taupin equations and (20) when 
T = 50 lam. We have found that 

la(y ) ~_ G21[(2yrAkoYlks) 2 + G 2] 

x sin2{n/2[(2rrAkoy/ks) 2 +G2]1/2}, (23) 

G 2 = Glly  4 + G22(rW) 2 + Glzy28W, y = 8tO/AO)0, 

Gti _~ 0.35, G22 ~_ 31.2, GI2 _~ -0.4. 

Formula (23) is in good agreement with the results of the 
numerical solution of the Takagi-Taupin equations. We 
have found above that diffraction is absent at the crystal 
thickness T=2.~ when q = 0  and W = W  0. When 

I h 
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0.20 - 0 0 0  0 2 0  0 4 0  0 .60 0 .8o 1 0 0  

Fig. 3. Diffraction at the single-crystal plate. T = 5001am. 
Ordinary Pendellbsung; HW = 0.593 but the I h scale is 
increased 20 times; a very small gap between the sheets of the DS is 
present. 
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t he  A W  a m p l i t u d e  W .  T = ] 0 0 0 1 ~ m .  - -  H W  = 0 . 5 8 7 ;  * 

HW = 0.6 but the 1~ scale is decreased l0 times. 
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W = W 0 + 8W, the amplitude of scattering A~(q = O) 
at the crystal is 

A , . ( q  = O) ~ n ( H 6 W )  ( 2 4 )  

and the intensity of the diffracted beam 

l h (  q - -  0 )  "~ ( n H 3 W )  2. (25) 

A coherent addition of amplitudes between 2., layers 
(25) leads to the strong dependence of the first peak in 
the Pendell6sung on HW. This conclusion is confirmed 
by results of direct numerical calculations (see Fig. 4, 
2~ = 50, T = 1000 lam, n = 20). 

The intensity at the center of the diffraction pattern is 

lh( q = 0) "~ sin2(2n6WB). (26) 

Therefore, deep and rapid oscillations of the diffraction 
fringes will exist in the time region near t = t 0, lh( q --- O, 
t = to) -- 0. The characteristic frequency ~p of these 
oscillations is "-- n --- T/2~ >> 1 times higher than the 
frequency of the acoustic wave. In general, the whole 
picture of the PendellSsung (11) will oscillate with this 
large frequency Wp >> o9~. 

Let us introduce some values, e.g. #s, the coefficient 
of the diffractional suppression by the acoustic wave, 

# s  - -  J h (  H W  - -  0 ) / J h ( n W ) "  ( 2 7 )  

Jh(HW) is the integral intensity of the diffracted beam in 
the angle interval - -AO 0 _< 6 0  <_ A O  o [(6)], that is, 
within the ordinary FWHM rocking curve. We found 
values of g+ to be large in all cases. We shall give an 
account of several results when the plate thickness 
T = 500 lam. # ,  reaches a very large value (up to 74) and 
is extremely strongly dependent on the instantaneous 
displacement U in the acoustic wave (see Fig. 5). For 
example, #s = 74.6 at HW = 0.5878 and p,~ = 41 at 
HW = 0.580. Such a strong dependence of p,~ on HW 
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Fig. 5. (a )  T h e  very strong dependence of the diffractional suppression 
p., on the AW amplitude W .  (b) T h e  central part of (a) but the W 
scale is increased 10 times. HWo = 0 .5878 ,  T = 500mm. 

can be explained by the first terms in (20), (22) and (23) 
being very sensitive to 3W, that is to the AW amplitude. 
It is interesting also that, in spite of the strong 
suppression of intensity lh(q) near the center of the 
rocking curve, the integral intensity lhi for all directions 
of the difracted beam is approximately twice as large as 
that for the perfect crystal without acoustic excitation 
(Fig. 6a). The large value of # ,  leads to the correspond- 
ing increase in the intensity of the forward-scattering 
beam. p,, strongly depends on HW. For example, the 
decrease in I h of between 40 and 74 times will be in our 
case at 0.58 < HW < 0.596 (see Fig. 5). Therefore, for 
the ultrasound frequency 100MHz, we shall have very 
short (--- 50-100 ps) intervals of  the deep suppression of 
the diffracted-beam intensity. It is also very interesting to 
observe the strong and steep dependence on time of the 
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Fig. 6. T h e  influence of the acoustic wavelength ;t s on the suppression 
of the diffracted beam. r = 115 lam, T = 500  ~tm. (a)  ( l )  t tW = 0; 
(2) H W  = 1.477,  ;t s = 500  lam; (3)  t tW = 0 .587 ,  2 s = 50 }am. (b)  
I tW = 0 .6008 ,  ;ts = 10~tm. 
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diffraction fringes in the diffracted or forward-scattering 
beams (26). Such experiments are realizable, probably 
using an Authier collimator and synchrotron-radiation 
impulses. A high-quality homogeneous AW is necessary 
for the success of such experiments. 

We used boundary conditions (3). What can we expect 
when T -  (2n + 1)2s/2, n = 1,2 . . . .  ? The suppression 
/z s will not be as strong as before because this value is 
defined by the probability of scattering at the layer 
thickness 2s/2, P "~ q2 [(15)] instead of P _~ q4 [(19)]. 

What can we say about lz s dependence on the AW 
frequency? We have found W 0 [(15)] using direct 
numerical solution of the Takagi-Taupin equations for 
the layer thickness 2s/2 and momentum q = 0. The 
results of the numerical solution of the TT equations with 
AW amplitude W = W 0 and thickness of crystal 
T = 5001am are presented in Fig. 6. Low-frequency 
AWs lead to a small suppression of the diffracted beam 
(Fig. 6a). Strong suppression of the diffracted beam is 
realized for the case of high-frequency ultrasound 
(k s >> Ak0) when Jo(4HW) " 0, that is H W  "~ 0.6003, 
1.375 . . . .  (Jo is the Bessel function). High-frequency 
AWs strongly increase /x s for our schematic model 
(r = 115, T = 500~tm) with suppression of the dif- 
fracted-beam intensity; tts _~ 5 x 104 (!) when 2 s = 
101.tm. The smoothing curve of the intensity of the 
diffracted beam (Fig. 6b) is well approximated as 

I h ~ 2.8 X lO-5(ftO/AO)o) 22 (28) 

when 166)/Atg01 < 3. Therefore, high-frequency ultra- 
sonic AWs (2 s = l0  Jam) and probably hypersound also 
lead to the strong and rapid suppression of the intensity 
of the diffracted beam outside the center of the 
diffraction pattern. This effect can be explained by the 
coefficients C "" 1/k~ 2-3 (18) when 2 s < r. Therefore, 
suppression o f / z  s is large and exists in a wide angular 
interval of the incident beam. The crystal (T = 500 I.tm) 
is effectively divided ihto many thin layers (2 s = 10 ~tm). 

The amplitude of scattering is very small in each of these 
thin layers. 

It is likely that the rapid and deep suppression and 
oscillation of the intensity of the diffracted beam induced 
by ultrasound or hypersound could be used, in principle, 
for shielding electronic apparatus from the short power- 
ful impulses of highly collimated monochromatic SR 
beams. The shielding from SR impulses is discussed in 
experiments with SR excitation of MOssbauer nuclei. 
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Prague). I wish to express my appreciation to Professor 
P. Mikula, Dr P. Lukas and their colleagues for the 
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interesting discussions and to Dr L. Sedlakova, J. Saroun, 
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Abstract 

The symmetry of the similarity of the surface step 
structure in zinc blende (sphalerite) type structures is 
investigated by studying the crystal planes that are 
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parallel to the [01 i] axis. The symmetry transformations 
of the similar plane pairs are derived. Plane sets (111) 
and (311) are the planes of symmetry. The similarity of 
the surface step structure exists among three sets of 
planes. The surface geometric characteristics of similar 
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